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Abstract: The Cross-track Infrared Sounder (CrIS), in low Earth orbit since 2011, makes measurements
of the top of atmosphere radiance for input into data assimilation (DA) systems as well as the retrieval
of geophysical state variables. CrIS measurements have 2211 narrow infrared channels ranging
between 650 and 2550 cm−1 (~3.9–15.4 µm) and capture the variation in profiles of atmospheric tem-
perature, water vapor, and numerous trace gas species. DA systems derive atmospheric temperature
by assimilating CO2-sensitive channels in the CrIS longwave (LW) band (650–1095 cm−1). Here, we
investigate if CO2-sensitive channels in the shortwave (SW) band (2155–2550 cm−1) can similarly be
applied. We first evaluated the information content of the CrIS bands followed by an assessment of
the performance degradation of retrievals due to the loss of individual CrIS bands. We found that
temperature profile retrievals derived from the CrIS SW band were statistically both well-behaved
and as accurate as a retrieval utilizing the CrIS LW band. The one caveat, however, is that the higher
CrIS instrument noise in the SW band limited its performance under certain conditions. We conclude
with a discussion on the implications our results have for channel selection in retrieval and DA
systems as well as the design of future space instruments.
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1. Introduction

Our primary intent in this paper is to encourage the utilization of the shortwave
(SW) band of existing space-borne infrared weather instruments and to provide guidance
on whether future instruments could utilize the SW spectral region as a replacement for
the more traditional LW spectral region in weather applications. Modern-era infrared
(IR) sounders measure the top of atmosphere-emitted radiance in thousands of narrow
channels from ~650 to ~2550 cm−1 (~3.9–15.4 µm). Instruments with such high spectral
resolution have sensitivity to energy emitted by a host of atmospheric gases at many
different pressure layers: first and foremost, water vapor (H2Ovap) and ozone (O3), and
to a lesser extent, carbon monoxide (CO), carbon dioxide (CO2), methane (CH4), nitric
acid (HNO3), sulfur dioxide (SO2), nitrogen oxide (N2O), and ammonia (NH3). Both data
assimilation (DA) and retrieval systems employ Bayesian mathematics to derive parameters
representing the atmospheric state. Numerical weather prediction (NWP) global DA
systems utilize a large number of observational sources (i.e., numerous satellite and ground-
based instruments) to simultaneously retrieve a diverse set of state variables on a uniform
grid. Retrieval systems, on the other hand, utilize the information available from a single
satellite along its line-of-sight to retrieve only those geophysical parameters for which that
satellite is sensitive. Hyperspectral IR sounders have information about lower-, mid-, and
upper atmospheric temperature in CO2-sensitive channels of the ~4.3 µm (~2300 cm−1)
and ~15 µm (~660–700 cm−1) IR regions. Traditionally, only the longwave (LW) CO2
channels at ~15 µm have been used in DA systems [1] because they are insensitive to the
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daytime effects caused by solar reflectivity and non-Local Thermodynamic Equilibrium
(non-LTE) [2,3]. With non-LTE mostly addressed by improvements in SW radiative transfer
calculations [4,5], some Bayesian retrieval systems now include channels from the SW
~4.3 µm and LW ~15 µm CO2-sensitive bands in their temperature retrievals for added
stability and sounding capability [6–8]. In this paper, we evaluate the potential of using
CrIS SW CO2-sensitive channels as a possible replacement for the CrIS LW channels in
order to understand the feasibility of smaller instruments that lack the ~15 µm CO2 IR
absorption band [9].

The Cross-track Infrared Sounder (CrIS) [10,11], a Michelson interferometer, has been
in low Earth orbit since 2011 when it was launched on the Suomi National Polar-orbiting
Partnership (SNPP) platform. Soon after, the National Oceanic and Atmospheric Ad-
ministration (NOAA) started to generate CrIS measurements and products operationally
in support of weather forecast systems and applications. NOAA continues to do so for
CrIS on the Joint Polar Satellite System (JPSS-1) platform that was launched in 2017 (op-
erationally known as NOAA-20). Three additional CrIS instruments are scheduled for
launch on JPSS satellites well into 2040. The 2211 full-spectral resolution CrIS channels can
be grouped into three bands; LW (650.0–1095 cm−1 with 713 channels), midwave (MW;
1210–1750 cm−1 with 865 channels) and SW (2155–2550 cm−1 with 633 channels). Other
hyperspectral sounders that utilize these spectral regions include the legacy Atmospheric
Infrared Sounder (AIRS) on Aqua since 2002 [12] and the Infrared Atmospheric-Sounding
Interferometer (IASI) [13] on a series of MetOp satellites since 2006. Table 1 in [7] summa-
rizes and contrasts these three instruments.

With a record spanning more than two decades, there is strong evidence of the unique
and valuable contribution spaceborne hyperspectral IR measurements make to NWP global
DA systems [1,14–24]. Similarly, geophysical variables retrieved from hyperspectral IR
measurements have value in real-time weather monitoring and forecasting [25–30]. In
general, operational DA systems use small subsets of IR channels that are most sensitive to
vertical profiles of atmospheric temperature (Tp) and water vapor (H2Ovap) [2]. The CrIS
radiances should invoke changes in the background fields of Tp and H2Ovap but could also
invoke changes in other background fields such as wind or height. Retrieval systems, on the
other hand, are optimized to extract the maximum information from instruments aboard
a specific satellite and they extract multiple atmospheric state variables, such as surface
temperature, emissivity, cloud fraction, cloud top pressure, O3, CO, CH4, CO2, HNO3,
N2O and a host of minor gases, in addition to Tp and H2Ovap. Some retrieval systems are
statistical inversions that use all available IR channels [31–35]. Statistical retrievals can be
implemented rapidly and require fewer operational resources. Other retrieval systems
adopt Bayesian Optimal Estimation (O-E)—similar to the mathematics employed in DA—
that require detailed radiative-transfer calculations that can consume resources. One way
to speed up O-E computations is to utilize subsets of IR channels selected for each target
variable [7,36–38]. There are various methods to use when selecting channels for a specific
system or retrieval variable [15,19,39–44] and they all have in common the goal to reduce
data volume for higher computational efficiency and to improve signal-to-noise for better
stability across the globe under many types of weather conditions. Stability is achieved
when inversion solutions converge without artifacts such as vertical oscillations or large
errors in specific geographic regions or meteorological regimes.

Channels selected for assimilation in NWP global DA systems usually exclude the
SW ~4.3 µm band in favor of the LW ~15 µm CO2 absorption band because the SW band is
(i) subject to non-LTE effects that are historically difficult to model; (ii) sensitive to reflected
solar irradiance, and (iii) subject to non-linear effects of the Planck function. Issues (i) and
(iii) will be discussed in more detail in Sections 2.2.1 and 2.2.2, respectively, and have been
resolved in modern retrieval systems. For issue (ii), NUCAPS solves for spectral emissivity
and spectral effective reflectivity (i.e., we allow for changes to the solar irradiance) and, as
such, it is part of the NUCAPS state vector and error budget. In applications where the
surface emissivity, reflectivity, and solar irradiance are assumed known, special care must
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be taken—especially over specular reflecting ocean and lake regions. Some daytime scenes
may need to be ignored (i.e., glint conditions).

With new instrument designs that favor narrower spectral ranges for cost efficiency,
e.g., the pathfinder CubeSat Infrared Atmospheric Sounder (CIRAS) [9,45,46], we revisit
the work by [47] on SW IR capability and ask if CO2 channels in the LW (~15 µm) and SW
(~4.3 µm) absorption regions can be functionally equivalent. Our research question is this:
“Can atmospheric temperature be retrieved with the same quality and stability using CO2 sensitive
channels centered at ~4.3 µm and ~15 µm, respectively?”

We address this question using an off-line version of the NOAA-Unique Combined
Atmospheric Processing System (NUCAPS). NUCAPS retrieves Tp and H2Ovap (among
many other state variables) in two steps; first, a linear regression followed by an O-E
inversion. Both of these steps will be discussed in more detail in Section 4. We give a brief
outline of NUCAPS in Section 2.1 followed by a discussion of the CrIS SW and LW bands in
Section 2.2. We evaluated the information content of the CrIS instrument in two ways. First,
in Section 3, we evaluate the total information content of the CrIS radiance measurements
by estimating the transition between the signal and noise using eigenvector decomposition
of the radiances. Second, in Section 4, we perform a set of band-denial experiments to
explore the impact of the CrIS bands on vertical profiles of temperature and moisture.
We conclude with a discussion on the implications our results have for channel selection
in retrieval and NWP DA systems, as well as the design of future space instruments, in
Section 5.

2. Background
2.1. Operational Use of CrIS Radiances in Retrievals

As stated earlier, operational retrieval systems tend to use single satellites, whereas
global DA systems utilize numerous observational sources. As a result, in such DA systems,
the CrIS radiances can impact many state variables and the flow of information content of
the radiances into specific geophysical variables can be difficult to quantify. For example, a
CrIS channel most sensitive to temperature may impact the temperature parameters but
could also influence moisture, wind, or other state variables in the DA system. In NUCAPS,
on the other hand, only the specific satellite radiances are used and their impact on Tp and
H2Ovap can be quantified and clearly assessed. We will use NUCAPS retrievals to assess
and intercompare the information content of the LW, MW, and SW bands of CrIS.

NOAA runs NUCAPS operationally in near-real-time (<3 h latency from time of
measurement) for all available measurements globally from CrIS and IASI, each yielding
over 320,000 observations per day for a 3-D characterization of the atmospheric state. In
partnership with regional direct broadcast stations, NOAA also supports the real-time
(< 60 min latency) dissemination of regional NUCAPS products with the Community Satel-
lite Processing Package (CSPP) [48]. NOAA continues to maintain and validate NUCAPS
retrievals with targeted system improvements and dedicated field campaigns [49–52]. The
primary end-user base for NUCAPS soundings is the National Weather Service (NWS)
through the Advanced Weather Interactive Processing System (AWIPS). Weather forecasters
receive the wide swaths of NUCAPS Tp and H2Ovap profiles in AWIPS-II to improve situa-
tional awareness [26,27,53] and help monitor the probability of evolving severe weather
events [25,29].

NUCAPS has its origin in the NASA AIRS Science Team retrieval approach [8,54,55]
that, to our knowledge, was the first algorithm to merge the fast statistical approaches
with the mathematically robust O-E variational methods and was first demonstrated with
the AIRS and AMSU instruments on the Aqua satellite [8,22,23,38,55]. NUCAPS was
operationally implemented at NOAA for Metop-A, -B, -C, S-NPP, and NOAA-20. NUCAPS
runs a linear regression operator [31] to acquire a-priori estimates of Tp and H2Ovap for
use in an ‘information content based’ O-E inversion to retrieve the final Tp and H2Ovap
estimates [56]. The a-priori error covariance, however, is inflated to agree with an offline
climatological estimate. NUCAPS uses climatological a-priori estimates for all the trace gas
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profiles and spectral emissivity. The regression step uses static coefficients, derived early in
the satellite mission, that quantify the relationship between all available IR channels and the
Tp and H2Ovap profiles and will be discussed in more detail in Section 4.1. The O-E retrieval
employs a subset of IR channels that we describe below. NUCAPS additionally utilizes the
co-located microwave instruments available on each satellite in both the regression and
O-E Tp and H2Ovap retrievals. Given that our focus is on the value of the CrIS SW IR band,
we will ignore the microwave component of NUCAPS until the discussion in Section 4.

The NUCAPS O-E step employs the Stand-alone AIRS Radiative-transfer Algorithm
(SARTA) [57] as the forward operator for all IR retrievals. SARTA is optimized for high-
accuracy hyperspectral IR computations and its fast execution enables the use of retrievals
in near real-time forecasting applications. SARTA has the added ability to calculate trace
gas Jacobians (derivatives of radiances with respect to specific geophysical parameters) [37].
NUCAPS employs SARTA Jacobians to derive measurement sensitivity to the parameter
being retrieved. We call this the “signal,” S. NUCAPS also computes SARTA Jacobians
for all parameters that interfere with the signal to construct an error covariance matrix
based on internally derived error estimates of the parameters. We call this the “geophysical
error covariance” in order to distinguish it from statistical “background error covariances”
of the a-priori. We call the sum of three components—the instrument, forward model,
and geophysical errors—the total “noise, “, N. Finally, the AIRS Science Team approach
that NUCAPS adopted dynamically analyses the signal-to-noise ratio (SNR) at run-time to
reduce dependence on the background error covariance matrix. This approach enables very
fast and accurate retrievals that maximize the information retrieved under a wide range of
meteorological conditions. For example, in scenes (i.e., observations at specific locations
and times) where the information content is low (due to clouds, isothermal temperature
structure, lack of knowledge of trace gas amounts, etc.), the measurements will be damped
and the retrieval will more strongly depend on the a-priori. However, where information
content is high (scenes that are cloud-free, strong lapse rates, warm surfaces, climatological
trace gas amounts, etc.) the a-priori will be damped and the retrieval will more strongly
depend on the measurements. NUCAPS further linearizes and stabilizes the inversion by
retrieving multiple atmospheric variables sequentially using subsets of dedicated channels
that have the highest SNR [7]. NUCAPS is largely independent of forecast models and is,
therefore, well-suited for (near) real-time weather applications, and specifically to allow
weather forecasters the ability to intercompare and verify the accuracy of multiple NWP
models as the pre-convective environment or atmospheric stability change over the course
of a few hours [28].

The Community Long-term Infrared Microwave Product System (CLIMCAPS) [7,37]
is related to NUCAPS, but is targeted towards climate applications. Instead of a regres-
sion retrieval, CLIMCAPS uses the modern-era retrospective analysis for research and
applications Version 2 (MERRA-2) [16] as a-priori to promote continuity across different
instruments and platforms. CLIMCAPS has a more meticulous and robust propagation of
error estimates as part of the geophysical error covariance. Therefore, CLIMCAPS can be
used to study long-term processes, diagnose complex scenes and evaluate the influence of
the statistical regression a-priori in the NUCAPS system. CLIMCAPS is the NASA continu-
ity product that bridges instrument technology differences from Aqua (2002–present) to
JPSS (2011–present) to form a long-term continuous record of space-based soundings for
climate process studies. CLIMCAPS is available at NASA’s Goddard Earth Sciences Data
and Information Services Center (GES DISC) for the full AIRS and CrIS records from all
available platforms and spans two decades in total so far. We compare CLIMCAPS and
NUCAPS here to illustrate some retrieval algorithm design concepts and justify why we
selected NUCAPS for these experiments.

Both NUCAPS and CLIMCAPS use similar subsets of channels. We will focus here
on the CO2-sensitive channels from the LW and SW bands in their O-E Tp retrievals. A
detailed information content analysis will show that individual channels can be sensitive to
numerous signals within the geophysical state. In addition, both NUCAPS and CLIMCAPS
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have been optimized to use a subset of channels in their O-E step, with each subset being the
most sensitive to a specific geophysical variable while being the least sensitive to spectral
signals from interfering variables. Figure 1 depicts the spectral location of the channel sets
used in the NUCAPS O-E Tp retrieval; 68 in the LW band and 51 in the SW band with
strong sensitivity to Tp and low sensitivity to H2Ovap, O3, and other trace gases. Ref. [44]
outlines the method used to select these channels for NUCAPS. In addition to Tp, NUCAPS
and CLIMCAPS also retrieve atmospheric gases (H2Ovap, O3, CO2, CO, HNO3, N2O, CH4
and SO2), cloud properties (cloud top pressure and fraction) and Earth surface properties
(surface temperature and emissivity).
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Figure 1. Apodized observed CrIS spectra in brightness temperature units (Kelvin) measured on 15
July 2018 from the NOAA-20 (JPSS-1) Level 1B product. Each panel contains three spectra ranging
in degree of cloudiness. We selected three scenes with high cloud contract. From light to dark, the
NUCAPS-derived cloud fractions are 0%, 42% and 88%. (a) CrIS LW band and (b) CrIS SW band. The
red lines indicate the NUCAPS channel subsets in each band that is used in its temperature retrieval.
The longwave band has 68 channels and the SW band 51 channels.

This approach of retrieving geophysical variables requires spectrally localized channel
response functions in the instrument radiances. When the radiance measurements do not
have localized channel response functions, the side lobes of any given channel introduce
confounding errors that reduce the SNR of the target channel due to unknown thermal
gradients and trace gas absorptions that are spectrally distant from the channel. This
effect is especially strong when subsets of channels are used, such as in NWP DA systems
and O-E retrievals where complex radiative-transfer calculations and large 2-D matrix
inversions are employed iteratively. Note that both AIRS and IASI radiance measurements
are provided as localized spectral response functions. The CrIS radiances, however, are
distributed as “de-apodized” measurements and the channel response functions have very
large side lobes that can strongly prohibit our effort to decompose the spectral measurement
into discrete geophysical variables. We apply Hamming apodization to CrIS radiances
to impose localized channel response functions that can significantly reduce geophysical
noise in subsequent calculations. Apodization has the added benefit that it allows the use
of channel subsets. This is an important consideration in operational retrieval systems (i.e.,
NUCAPS and CLIMCAPS) where resources, such as the number of processors available
in real-time, and the demand for fast turn-around in downstream applications, can be
a limiting factor. Hamming apodization is a matrix operator that we apply to both the
radiances and instrument noise, it is a reversible calculation, maintains linearity of the
inverse problem and does not reduce the information content if a sufficient number of
channels are employed [58]. Hamming apodization does, however, improve the overall
SNR by reducing the geophysical noise caused by interfering absorption signals from
unknown atmospheric variables in different parts of the atmosphere. Retrieval systems
that use linear regression and retrieve all state variables simultaneously (e.g., [33]) have no
requirement for localized spectral response functions.
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Where instrument noise and channel characteristics affect every radiance measurement
(and thus retrieval), clouds impose error only for those scenes where they are present. While
the IR is strongly affected by clouds, the cloud information is poorly constrained by IR
measurements alone. Not accounting for the radiative signal caused by clouds would result
in large errors. In CLIMCAPS and NUCAPS, the cloud spectral signals are first removed
using a technique called cloud clearing [59]. Cloud clearing uses the spatial cloud contrast
in a CrIS field of regard (i.e., the 3 × 3 array of CrIS fields of view) to create a single cloud
cleared spectrum with reduced spatial resolution (~50 km at nadir). In essence, the spatial
information is used to remove the effects of clouds from the radiances such that all the
channels in the cloud-cleared spectrum can be utilized to derive atmospheric temperature
and composition. This technique helps to greatly expand the yield of high-quality IR
sounding observations to include those of unstable atmospheric conditions in complex and
partly cloudy scenes.

We used an offline version of the NUCAPS retrieval code to perform band-denial
experiments with the CrIS instrument and to evaluate the impact of the loss of those bands
on Tp and H2Ovap retrievals. Ref. [8] made the case for adopting SW channels in retrieving
surface temperature (and other surface parameters) in the AIRS version 7 system, but to
our knowledge, no hyperspectral IR retrieval system uses SW channels alone for their Tp
retrievals. With its linear regression retrieval as the first guess, NUCAPS can amplify small
instrument effects in its retrievals [7] and, thus, has the potential to readily show differences
between retrieval systems that utilize the SW instead of the LW.

2.2. Comparison of the Shortwave and Longwave CrIS Bands
2.2.1. Signal and Noise

The high-resolution transmission molecular absorption database (HITRAN) quanti-
fies spectroscopic parameters for a wide range of atmospheric gases. HITRAN was first
published by [60] in response to the requirement for detailed knowledge of IR atmospheric
molecular transmission. HITRAN has been actively maintained and the latest version is de-
scribed by [61]. In this paper, we will not go into any depth on the vibrational or rotational
modes of molecules because they are covered in detail in the scientific literature [62]. Of
interest, however, is that the AIRS Science Team radiative-transfer model, SARTA [57], uses
HITRAN for accurate and state-of-the-art rapid transmission calculations. As a result, NU-
CAPS runs SARTA for its O-E retrievals during runtime, and we use SARTA in this paper
to calculate sensitivity functions. All of our conclusions, however, would be unchanged
if another forward operator was used. For example, the Community Radiative-Transfer
Model (CRTM) that is used by NWP has the same accuracy and characteristics as SARTA
and the main differences are in their application-specific implementation.

Hyperspectral IR instruments measure radiance, but we tend to display them in units
of brightness temperature for intuitive interpretation. Brightness temperature, Θ(n, X), is
simply the temperature, T, of an idealized black body that is characterized by the Planck
function, Bυ(n)(T), that has the same radiance as the observation, R(n,X).

Θ(n, X) ≡ B−1
ν (ν (n), R(n, X)) (1)

where B−1
ν (ν, R) = α1ν/ ln

{
1 + α2υ

3/R
}

is the analytic inverse of the Planck function
and α1 and α2 are constants. Note that the computed hyperspectral IR radiances are always
positive such that Equation (1) will always produce a real value. Spaceborne measurements,
however, are subject to instrument noise and can thus approach (or even fall below) zero
such that the inverse Planck function in Equation (1) becomes undefined. For this reason,
in a retrieval system we never convert radiance measurements to brightness temperature.
Instead, we compute radiance differences with respect to the background state, defined as

δΘ ≡ δR
G(n, X)

, G(n, X) =
δBν(ν(n), T)

δT

∣∣∣∣
T=Θcalc(n,X)

(2)
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where δΘ is the derived “pseudo brightness temperature difference” (or pseudo-dBT)
spectrum in units Kelvin, Θcalc(n, X) is the brightness temperature calculated using the
SARTA forward operator for channel n and atmospheric state X. In a retrieval, X is derived
from the retrieval’s first guess estimate (e.g., with NUCAPS we use a regression operator,
see Section 4 for details), and in NWP global DA applications, it could be derived from the
model background.

In Figure 2, we show the brightness temperature differences for six atmospheric gases
active in the LW and SW CrIS spectral bands. We used a set of CLIMCAPS retrievals for the
atmospheric state, X, and then calculated a finite-difference change in radiance (δR) that
would occur due to a finite perturbation of a single parameter, p, in X, such that

δR ≡ δRcalc = Rcalc(n, X + p)− Rcalc(n, X) (3)

where Rcalc(n, X) is the forward operator for channel n. It is instructive to see the spectral
responses for the parameters of interest in the NUCAPS retrieval system. The state variables
and their perturbations in Figure 2 are Tp (p = 1.0 K), H2Ovap (p = 10%), O3 (p = 10%),
CO (p = 20%), HNO3 (p = 100%), CH4 (p = 10%), N2O (p = 3.0%) and CO2 (p = 6 ppmv),
respectively. SARTA requires state variables to be defined on 100 pressure layers. For the
sensitivity spectra depicted in Figure 2, we perturbed the target variable along all 100 layers
at once and did not distinguish between different pressure layers in the atmosphere. We
then used Equation (2) to depict the pseudo-dBT (∆Θ) and, for the sake of simplicity,
we show the absolute value, |δΘ(n, X)|, of the result in Figure 2. Our goal here was to
illustrate the relative strength and wavenumber range of spectrally active species relative
to the instrument noise in the LW and SW CrIS bands. Note the strong H2Ovap signature
in the northern hemisphere summertime case (Figure 2; top panel) is much larger than
the signature in the wintertime case (Figure 2; bottom panel). In addition to H2Ovap, O3
and HNO3 are spectrally active in the LW band and treated as interference signals when
selecting channels for Tp retrievals. In the SW band, the signatures for CO and H2Ovap
overlap in the 2150–2225 cm−1 wavenumber region with negligible interference in the rest
of the band. Both N2O and CO2 are chemically stable over long time scales and can be used
to retrieve Tp. Of all the gases listed in Figure 2, only H2Ovap and CO2 have significant
absorption signatures in both the LW and SW CrIS bands. Note that the spectral features
depicted in Figure 2 correspond to a specific atmospheric state over the mid-latitudes.
These spectral features will vary in magnitude (not wavenumber range) from scene to scene
depending on the vertical structure of temperature and the column density of gases. Nitric
acid (HNO3) with its very low concentrations at this location required an unrealistically
large perturbation of 100% to feature on this plot.

Measured spectra are also affected by instrument noise that must be taken into account
during retrieval. Ref. [37] published a figure that compares the instrument noise as Noise-
Equivalent Delta Temperature (NE∆T) in brightness temperature units [K], for CrIS, AIRS
and IASI. Of importance in this paper is the awareness that for CrIS, AIRS, and IASI, the
instrument noise measured as NE∆N (i.e., in radiance units of mW.m−2.sr−1/cm−1) is not
a strong function of the scene temperature and is usually treated as a constant for each
channel. The values of NE∆N come from a detailed analysis of the instrument’s on-orbit
black body calibration [63,64]. The instrument noise specified as NE∆T, however, varies
by a factor of 3 in the CrIS LW band, a factor of 16 in the MW band, and a factor of 100 in
the CrIS SW band for scene temperatures ranging from 200 K to 300 K. This is due to the
non-linearity of the Planck function, and we quantify this effect in Table 1.
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Table 1. CrIS instrument noise as NE∆T and NE∆N for three different scene brightness temperatures
(BT) in Kelvin [K]. For a constant NE∆N, the degree to which NE∆T varies with scene BT differs
markedly between the CrIS longwave (LW; 650.0–1095 cm−1), midwave (MW; 1210–1750 cm−1) and
shortwave (SW; 2155–2550 cm−1) bands.

Scene BT LW NE∆N LW NE∆T MW NE∆N MW NE∆T SW NE∆N SW NE∆T

200 K 0.05 0.09 0.03 0.65 0.0046 9.7

250 K 0.05 0.04 0.03 0.12 0.0046 0.5

300 K 0.05 0.03 0.03 0.04 0.0046 0.07

Ref. [1] stated that this highly non-linear effect renders CrIS SW channels unusable
in NWP global DA systems. To illustrate the issue, we can convert the instrument noise
using Equation (2) with ∆R = NE∆N and then we plot the resultant NE∆T(Θcalc) = δθ in
Figure 2 as a gray line. The LW noise is both very small and does not change significantly
between the summer and winter cases shown (compare the left panels in Figure 2a,b). In
the SW, however, the noise is larger wherever the scene temperature (i.e., Θcalc) is cold
due to the wintertime environment (compare the right panels in Figure 2a,b) or channels
sensitive near the tropopause (e.g., 2370–2380 cm−1). For many channels in the CrIS SW
band the noise is larger than the signal produced by our perturbations.

In NUCAPS we use pseudo-brightness temperature for both the measurements, as
radiance departures (∆Θcalc = (Robs − Rcalc)/G(n, X), and the noise (NE∆T = NE∆N

G(x,X)
).
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Therefore, the SNR is identical for both radiance and pseudo-dBT because the conversion
operator is the same in the numerator and denominator, that is,

SNR =
∆Rcalc
NE∆N

=
∆Θcalc

NE∆T(Θcalc)
(4)

The critical SW channels for Tp retrievals are in the spectral regions of 2200–2260 cm−1

and 2380–2405 cm−1. The SNR for these regions is high enough to have positive impact on
our retrievals (and possibly in DA systems). In NUCAPS (and CLIMCAPS) we do all inverse
calculations using pseudo-dBT, but this is somewhat irrelevant since the minimization
process always operates on the SNR, not the radiances or noise alone. There is no need,
whatsoever, to ever compute an observed brightness temperature.

The conversion of radiances to brightness temperature is the fundamental problem
encountered by Collard and McNally (2009). This conversion will respond asymmetrically
to noise (thus violating Gaussian assumptions) because the measured radiances that ap-
proach zero or become negative will have undefined values and must be ignored. This,
coupled with the specification of noise as a constant NE∆T(n) function, fundamentally mis-
represents the hyperspectral IR instrument noise. The use of pseudo-dBTs for inversions,
Jacobians, error covariance matrices, and noise can robustly eliminate problems caused by
the non-linearity of the Planck function. We strongly recommend that all applications either
explicitly use radiances or pseudo-dBT (i.e., Equation (2)) when employing IR channels.
While this is most relevant for the SW IR channels, it is also important for the MW and LW
channels.

2.2.2. Non-Local Thermal Equilibrium

Unlike the CrIS MW and LW bands, the CrIS SW band in the spectral region from
2260 to 2380 cm−1 is susceptible to an effect called non-local thermodynamic equilibrium
(non-LTE). In most of the Earth’s atmosphere, we can assume that molecules have rotational,
vibrational, electronic and kinetic energy states which can be described by a Boltzmann
distribution function specified with a single temperature (i.e., they are in thermodynamic
equilibrium with their local environment). This assumption of LTE is fundamentally
inherent in the derivation of the Planck function: an equation upon which all of our
forward operators rely. In the mesosphere, however, a low density of molecules causes this
assumption of LTE to break down during the daytime; molecules excited to high energy
levels by sunlight cannot be de-excited rapidly by collisions with other molecules. As a
result, these non-LTE effects cause observed radiances to appear warmer than radiances
computed with a forward operator that assumes LTE.

Ref. [5] discussed the non-LTE effects of AIRS and found that they could be corrected
for by using knowledge of the solar elevation angle and upper stratospheric temperature,
for which modern instruments such as CrIS have some skill in measuring. Ref. [4] discussed
an implementation of the non-LTE correction in the CRTM that is used in DA systems.
Validation of NUCAPS has shown that daytime retrievals perform as well as nighttime
retrievals [50,52], suggesting this non-LTE can be sufficiently modelled such that CrIS
SW channels can be used reliably in both daytime and night scenes. It is worth noting
that if there are large non-LTE correction errors the retrieval will be rejected due to failed
convergence of the minimization. Other applications may need to test the residuals of
channels sensitive to non-LTE.

2.2.3. Advantages and Disadvantages of Using the SW Band

Ref. [47] made a strong and clear case for why the SW CO2 absorption region has
potential to provide high-quality temperature-sounding information. We simplified and
summarized their comparison of the SW and LW CO2 bands for use in Tp retrievals in
Table 2. The sharper SW Jacobians have higher vertical resolution, and combined with the
lack of interference from highly variable atmospheric gases (such as H2O, O3 and HNO3),
provide strong advantages over those of the LW CO2 channels. Perhaps the most notable
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disadvantage of SW CO2 channels in Tp sounding is the absence of sounding capability in
the upper stratosphere.

Table 2. A functional comparison between the CrIS longwave (LW) and shortwave (SW) infrared
bands. This table is a summary of the work first published by [47].

Variable CrIS LW Band (~15 µm) CrIS SW Band (4.3 µm)

Interfering gases in CO2 bands H2O, O3, HNO3 None

Vertical sounding range 1 hPa to surface 20 hPa to surface

Influence of solar radiation Negligible Must handle non-LTE and surface
reflection

Planck function linearity First order linearity Highly nonlinear

Sensitivity of the Jacobian to scene
temperature Low High

Tropospheric vertical resolution 4 km 2 km

We calculated Tp Jacobians using the logic of finite differencing as depicted in Equation (2),
except this time, we perturbed Tp (the X variable) at every pressure level to construct
a matrix where the sensitivity of each channel, n, is calculated for each pressure level
from Earth’s surface to the top of atmosphere. For these Jacobians, we did not impose
absolute values. In Figure 3, we show the Tp Jacobians for the 68 LW and 51 SW channels
(Figure 1) used in operational NUCAPS retrievals. We present these Jacobians in Figure 3,
for the same two scenes as shown in Figure 2—one in northern hemisphere mid-latitude
summer conditions and one in winter conditions—to demonstrate how their structure
can vary depending on the geophysical state. Θcalc was calculated using NUCAPS as
the background atmospheric state for profiles of temperature, moisture, traces gases, and
surface parameters. The Tp Jacobians represent the sensitivity of CrIS spectral channels at
different atmospheric pressure levels given a 1 K change in Tp at each level, assumptions
about the structure and chemical composition of the background atmospheric state at
a target scene as well as assumptions made within SARTA about atmospheric radiative
transfer. For this reason, Jacobians can vary significantly from scene to scene.
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Figure 3. Finite-differencing temperature Jacobians for the 68 longwave (LW) and 51 shortwave
(SW) CrIS channels used in NUCAPS for temperature profile (Tp) retrievals. (a) LW (left panel)
and SW (right panel) channel Jacobians for a mid-latitude [45.7◦N, 117.0◦E] summer scene with
surface temperature (Tsurf) 299 ◦F. (b) LW (left panel) and SW (right panel) channel Jacobians for a
mid-latitude [44.7◦N, 117.3.0◦E] winter scene with Tsurf 270 ◦F. These are the same two scenes used
in Figures 1 and 2.
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Of note in Figure 3 are the sharp tropospheric Tp functions and the broad stratospheric
Tp sensitivity for the SW channels (righthand figure in both panels).

3. Evaluating Information Content from Radiance Measurements

We evaluated CrIS information content in two ways. In this section, we evaluated the
information content of radiance measurements by using empirical orthogonal functions
(also known as singular eigenvector decomposition) to estimate the transition between
signal and noise. In Section 4, we employed a full retrieval system to explore the value of
each CrIS band in subsequent Tp retrievals.

We utilized CrIS Level-1B files from the SNPP satellite processed at the NASA Sounder
Science Investigator-led Processing System (SIPS), whereas the NOAA operational NU-
CAPS systems uses Level-1B files processed at the Interface Data-Processing System (IDPS).
We chose to use the Sounder SIPS Level-1B files [65] because this gave us access to the full
SNPP record reprocessed consistently with a state-of-the-art calibration algorithm. These
are also the same Level 1B files publicly available at the NASA GES DISC. We utilized data
from the SNPP satellite (2015–2021), instead of NOAA-20 (late 2017–present), because at the
time of this study, SNPP provided us with a longer record of CrIS data in the full-spectral
resolution (FSR) mode. We do not expect the results to be significantly different for the
NOAA-20 CrIS instrument or any future CrIS instruments.

Another motivation for using SNPP is that some of the bands failed over the mission
and we wanted to understand the relative value of each band. CrIS on SNPP was configured
from nominal- to full spectral resolution on 2 November 2015. On 24 March 2019 the CrIS
Side A electronics for the MW band failed, and on 24 June 2019 the CrIS instrument was
switched to the fully functional Side B electronics to continue the Level-1 record. Then on
21 May 2021, the Side B LW band failed and CrIS was switched back to Side A electronics,
where the LW + SW bands were still fully functional. This decision to switch back to Side A
electronics was based on recommendations from NWP centers worldwide that the loss of
the CrIS MW band was more tolerable than the loss of the LW band due to the assimilation
of other instrument data that compensate for the loss of the CrIS MW band. Without a CrIS
MW band; however, NOAA made the decision to turn off NUCAPS operational processing
for the SNPP since the loss of the MW band significantly degraded H2Ovap retrievals that
are regularly used in real-time weather forecasting (e.g., [25]). The impact of a MW band
loss is quantified in [66]. We will discuss this in more detail in Section 4. The loss of CrIS
bands during the S-NPP mission highlights the importance of quantifying the information
content of the individual bands.

We selected six focus days for our study (14 January 2016, 15 June 2017, 1 April 2018,
14 September 2018, 15 December 2018, and 25 February 2019) using Level-1B files acquired
with CrIS on Side A electronics. We derived a radiance covariance matrix of the focus day
observations spanning multiple seasons and years, given by

Ψ =
[
Robs − Robs

]
NE∆N−2[Robs − Robs

]T (5)

and that represents the variance captured in an ensemble of CrIS Level-1B radiance data.
In this equation, Robs is the CrIS radiance spectrum at a single field-of-view and Robs is the
ensemble average. The radiance covariance matrix, Ψ, has dimension [n × n] frequencies,
where n is the number of CrIS channels used. When all three CrIS bands are used, n = 2211.
The radiance data are thinned by selecting every 15th scanset of CrIS radiances (i.e., 30 sets
of CrIS 3 × 3 footprints) to avoid the oversampling of similar scenes. Note that the
noise-normalized radiance covariance shown in Figure 4 would be similar if the units
were in pseudo-dBT; however, in practice, those channels in which the observed radiance
approaches zero or becomes negative would have to be removed.
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the top and the left side to provide context. The covariance matrix is decomposed into its sign (i.e., +
or −) with magnitude and color proportional to the ±Ψ(log10|Ψ|) and Ψ given by Equation (5).

The covariance of CrIS measured radiances is shown in Figure 4 for the LW, MW
and SW CrIS bands. The average of the CrIS radiance ensemble (Robs), converted to
brightness temperature [K] as B−1

v
(
Robs

)
is shown along the top and the left side of the

figure to provide context and the covariance is decomposed into its sign (i.e., + or −) with
magnitude and color proportional to the ±Ψ(log10|Ψ|), where Ψ is given by Equation (5).

The checkerboard pattern in Figure 4 results from the spectral redundancy that is
inherent in the infrared spectrum because many of the channels are sampling the same
atmospheric level and have similar variance. Notice the strong covariance between the SW
and LW temperature sounding regions (670–720 cm−1 and 2380–2400 cm−1, respectively).
For example, the 650–660 cm−1 region is sensitive to the mid- and upper stratosphere and
that region is anticorrelated with the rest of the CrIS spectrum except in the SW band where
N2O- and CO2 (2220–2250 cm−1)-sensitive channels also have sensitivity to the mid- and
upper-stratosphere.
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We then compute eigenvalues, λ(k), and eigenvectors, E(n,k), that satisfy λ(k) = E(k,n)
Ψ(n,n) ET(n,k). Note that the eigenvalues, λ(k), are directly proportional to strength of the
variance explained in each orthogonal eigenvector, E(n,k); however, it does not attribute
what type of information it represents (e.g., temperature, moisture, etc.). Theoretically, the
number of significant eigenvalues, k, can approximate the total number of channels, n, when
each radiance channel has unique information content. However, for the hyperspectral
infrared instruments, k is always much smaller than n because there is a large redundancy in
the information provided by these instruments. When this covariance matrix is decomposed
into orthogonal eigenvectors, it quantifies the total information content as the index number
(k) of significant eigenvectors with eigenvalues (λ) greater than 1, which is also known as
the ‘degrees of freedom for signal’ (DOFS).

In Figure 5, we show some examples of the eigenvectors to illustrate how they relate
to the geophysical variables. In the top panel, we show the average of the CrIS radiance
ensemble as a guide to what signals are relevant (e.g., 650–750 cm−1 and 2300–2500 cm−1

for CO2, ~1000 cm−1 for O3 and 1300–1750 cm−1 for H2Ovap) and where surface and clouds
might be. The second and third panels show the first two eigenvectors. The eigenvectors
are strong in the window region and probably represent the variance of cloud signals [67].
The fourth panel is the third eigenvector and has obvious stratospheric and ozone features.
The fifth panel is the 25th eigenvector with a much weaker signal (

√
λ = SNR = 25) and

looks like stratospheric Tp. The final panel is eigenvector 200 which has an extremely
weak SNR (i.e., it is approaching one) and has random spectral features. All remaining
higher-order eigenvectors represent noise. In a thermal sounder the temperature lapse
rates affect the signal strength of all channels whereas trace gases affect only those channels
with significant absorption. One might expect the temperature profile, Tp, to require many
eigenfunctions, whereas a trace gas might only be represented by a few eigenfunctions.
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In Figure 6 we contrast the information content (quantified as DOFS) of various CrIS
band combinations. The LW + MW + SW configuration has the largest number of DOFS,
as expected. When we remove the SW band in the LW + MW configuration we see a
slight loss of information content (85 versus 100 DOFS) that we expect is due to, (i) the
loss of CO information (see Figure 2), (ii) the loss of information about solar reflection
and non-LTE information, as well as (iii) the loss of information about N2O. We expect
that there may also be some loss of vertical sensitivity to temperature—that is the Tp fine
structure—because the SW band has sharper weighting functions than the LW (Figure 3). It
is not possible to identify the exact geophysical components without further sub-setting
of the channels. When we remove the LW band and calculate DOFS with a MW + SW
configuration we see an even greater loss of information (DOFS = 65) compared to the
LW + MW + SW configuration (DOFS = 100). This makes sense given that, unlike the LW
band, the CrIS SW band does not contain any information about O3 and very little about
H2Ovap, clouds, or surface parameters from the ~10 µm and ~12 µm window regions. The
SW band also has a lack of sensitivity to atmospheric temperature in the upper stratosphere
(<20 hPa). The LW-only configuration has the same amount of information as the MW +
SW configuration (both have 65 DOFS) even though the content is for different atmospheric
variables. In addition, we show λ for a subset of channels in the R-branch of the LW CO2
band (690–790 cm−1) to isolate those signals.
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O3, and CO absorption features. Most of the channels in the CrIS MW band have some 
sensitivity to mid-tropospheric CH4 and very high sensitivity to H2Ovap (not shown) that 
is convolved with information about atmospheric Tp. Of all three bands, the SW-only 
system has the lowest information content (DOFS = 35) because of the lack of sensitivity 
to (or information about) stratospheric Tp, H2Ovap, O3, CH4, HNO3, SO2, cloud properties, 
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Figure 6. Eigenvalues (λ) of the eigenvectors derived from the covariance matrix of CrIS full spectral
radiance (FSR) radiance measurements presented in Figure 4. The number of λ ≥ 1 is given by the
index value, k, for different ensembles of CrIS channels with the total number of CrIS FSR channels
(Nc) listed in parentheses. The λs are plotted against k for (solid black) the longwave (LW; 650.0–
1095 cm−1), midwave (MW; 1210–1750 cm−1) and shortwave (SW; 2155–2550 cm−1) CrIS bands
(Nc = 2211), (solid blue) the LW and MW bands (Nc = 1578), (solid red) the MW and SW bands
(Nc = 1498), (dashed blue) the LW band only (Nc = 713), (dashed red) the SW band only (Nc = 633),
(dotted black) a subset of the LW channels in the 690–790 cm−1 range (Nc = 161) and (dashed black)
the MW band plus LW channel subset in the 690–790 cm−1 range (Nc = 1026).
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The MW-only system has a total of 60 DOFS that can be explained by the loss of CO2,
O3, and CO absorption features. Most of the channels in the CrIS MW band have some
sensitivity to mid-tropospheric CH4 and very high sensitivity to H2Ovap (not shown) that is
convolved with information about atmospheric Tp. Of all three bands, the SW-only system
has the lowest information content (DOFS = 35) because of the lack of sensitivity to (or
information about) stratospheric Tp, H2Ovap, O3, CH4, HNO3, SO2, cloud properties, and
the strong surface emissivity features near ~10 µm.

Measured spectra are highly convolved signals of multiple atmospheric state variables
that pose a great challenge when trying to invert the signal into distinct variables during
retrieval. We ran two additional experiments in which we calculated λ for a channel set
with sensitivity mainly to Tp in the LW band (690–790 cm−1). We hypothesized that the
690–790 cm−1 region approximates the information content of the CrIS SW band. With this
restricted set of LW channels, we excluded information about upper stratospheric Tp as
well as information about O3 and properties about the Earth surface and clouds from the
spectral window regions. It is curious to note that the LW (690–790 cm−1) configuration
has similar information content to the SW-only configuration and that the MW + LW
(690–790 cm−1) has similar information content to the MW + SW (both are 65 DOFS). This
demonstrates that there are about 30 DOFS that are unique to the CrIS MW band (H2Ovap,
CH4, SO2), and that the channel sets for Tp used in retrieval or assimilation systems should
be well represented by the CrIS SW band.

4. Deriving Information Content from NUCAPS Retrievals
4.1. Methods

The NOAA operational NUCAPS system uses all CrIS bands and employs coincident
microwave measurements from the Advanced Technology Microwave Sounder (ATMS) to
improve the detection of clouds, to stabilize the regression inversion and the O-E retrieval
of Tp and H2Ovap, and to provide additional quality control to reject scenes with cloud-
contaminated cloud cleared radiances (i.e., reject scenes in which cloud clearing failed
to remove all the effects of the clouds). Typically, the microwave adds Tp and H2Ovap
information in complex meteorological scenes.

We utilized the off-line science code to develop a suite of NUCAPS systems where
we denied individual bands of CrIS and/or all ATMS channels. That is, we built four
configurations of CrIS: the baseline configuration that uses all channels from the three CrIS
bands (LW + MW + SW), and three sets of two CrIS bands (MW + SW, LW + MW, and LW +
SW). We also constructed configurations with and without the ATMS channels to quantify
the contribution microwave radiances make to stabilizing and enhancing the retrieval of Tp
and H2Ovap.

As mentioned earlier, NUCAPS has two main retrieval components—the eigenvector
regression retrieval [31], followed by a physical O-E retrieval that minimizes the difference
of observed radiances and radiances computed using the SARTA forward operator.

We constructed regression coefficients for each of the eight configurations of the
CrIS + ATMS instruments. NUCAPS actually employs two regression steps—one that has
coefficients trained on Level-1B CrIS radiances and another with coefficients trained on CrIS
cloud-cleared radiances. For the cloud cleared regression training we used cloud-cleared
radiances derived from the baseline system as Robs, because this system has been optimized
for cloud clearing over many years of operations; each retrieval configuration, however,
will retrieve its own cloud cleared radiances using only those channels available to that
configuration.

An eigenvector regression uses principal component scores that are derived from the
eigenvector decomposition discussed in Section 3. The radiances (either as CrIS radiance
measurements or cloud cleared radiances) are converted to principal components as:

PC(k) = E(k, n)
(
Robs − Robs

)
/NE∆N(n) (6)
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Note that the truncation of the PCs from n- to k-dimensions (i.e., the subset of PCs
associated with highest eigenvalues) greatly speeds up real-time processing and is also a
form of regularization because all PCs that predominantly represent instrument noise (i.e.,
where λ(k) < 1) are removed from calculations [68].

The PCs are then used to derive the regression coefficients by combining each vector
of PC(k) with the co-located ATMS channels (we used channel numbers 3 to 22, since
channels 1 and 2 have much larger footprints) and then collocating them with spatially
and temporally interpolated Tp and H2Ovap fields from the from the European Center for
Medium-range Weather Forecasts (ECMWF) model. For each geophysical parameter, we
solve for regression coefficients that satisfy an equation of the form:

XECMWF(i) =
K

∑
k=1

A(i, k)× PC(k) +
J

∑
j=1

B(i, j)× RATMS(j) + C · θsat + D · θsun (7)

where XECMWF(i) denotes a single parameter from ECMWF analysis (e.g., T(100 hPa)). We
use the 100-layer representation of Tp and H2Ovap from ECMWF for our X(i) such that
Equation (7) represents 200 equations. The terms on the right-hand side represent the
contributions from the CrIS, ATMS, satellite zenith angle, θsat and solar zenith angle, θsun,
respectively. For each NUCAPS configuration, we solved Equation (7) simultaneously for
the coefficients A, B, C, and D using least squares minimization. For systems in which we
deny ATMS we only solve for A, C, and D (i.e., B(i,j) = 0). For the least squares minimization,
we utilize the same six focus days that we used to derive the eigenvectors. Therefore, the
coefficients for each of the 200 equations are derived from millions of scenes representing
all seasons and meteorological regimes. Our experience with the NOAA operational system
is that a handful of focus days is sufficient for the entire mission as long as the instruments
are well calibrated. See [31] for more details on the eigenvector regression methodology.
Equation (7) is a simple form of machine learning that has been shown to be robust and
well-behaved globally. It is important to realize that the eigenvector regression retrievals
are model-independent, since the ECMWF model was used only in the derivation of the
coefficients and those coefficients are static. We derived regression coefficients for each of
the 8 configurations.

One could consider adding the microwave (i.e., ATMS) to the eigenvector analysis
in Section 3 rather than having separate regression coefficients, B(i,j) in Equation (7). We
expect ATMS to be somewhat redundant with CrIS in that both instruments respond to Tp
and H2Ovap; however, the ATMS channels have significantly lower sensitivities to clouds
and trace gases than the CrIS channels. We also expect the 22 ATMS channels to have very
low redundancy such that adding ATMS to the PCA term of Equation (7) does not yield
mathematical or operational advantages.

The regression results for Tp and H2Ovap are then used as the first guess for the
O-E retrieval steps. We optimized the O-E retrieval component for each of the eight
configurations by adding additional channels, if possible, and adjusting quality control. The
details of each configuration’s optimization are beyond the scope of this paper, but when
desired channels were unavailable, we selected as many channels in the remaining bands
with similar characteristics as possible. The full channel lists for each configuration are given
in the Supplementary Materials. For example, in the baseline system we utilized channels
sensitive to H2Ovap in the LW band and to improve lower tropospheric temperature
retrievals. When removing the LW band we selected additional channels from the MW
band or SW band. In many configurations, there will not be equivalent channels and
the performance of that configuration will be degraded. Similarly, when the SW band is
removed, we can employ additional channels from the MW- and LW bands. For quality
control (QC), we adjusted the QC metrics to provide as many successful retrievals as
possible while keeping performance metrics as good as possible. For systems that employ
microwave observations, the use of microwave radiances in the first guess state can improve
cloud clearing and the ability to remove scenes that fail its quality control.
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For configurations without CrIS LW channels we had to turn off the O3, HNO3,
and CO2 products, since these variables cannot be retrieved without LW channels. For
configurations without CrIS MW channels we, similarly, had to turn off CH4, HNO3 and
SO2 retrievals. And finally, for configurations without CrIS SW channels we had to turn
off the CO retrieval step. Our intent is to explore operationally viable systems in which
we lose an entire band. When a retrieval does not have significant signal it will return the
a-priori, therefore, we felt it best to completely turn off the retrieval rather than attempt
to run the retrieval system using the relatively weak channels available in the remaining
bands. We do not expect the band-denial experiments with NUCAPS to be sensitive to
the loss of the trace-gas retrieval because they are run after the Tp and H2Ovap retrieval
steps are complete and because of our conservative approach in channel selection. The one
caveat to this is ozone which can affect the Tp retrieval; however, that would be realistic in
an operational context since ozone is derived from the LW band and does not have any
significant signal in the CrIS SW band.

In the baseline NUCAPS system (LW + MW + SW), we make use of many QC tests
where we compare retrievals with and without ATMS channels. For configurations without
ATMS we had to remove those QC tests and adjust thresholds for the remaining QC tests.
This is considered a sub-optimal way to run the NUCAPS system and, therefore, the results
shown in the next section should not be interpreted as a recommendation to provide these
products operationally. However, given that SNPP has lost CrIS bands during its mission,
our results are relevant for decisions related to product skill when certain CrIS bands are
lost.

Our purpose here is to illustrate the loss of information content when we deny certain
CrIS bands and/or deny all of the ATMS channels. We have made a reasonable attempt
to optimize each configuration. We compared the NUCAPS Tp and H2Ovap products to
co-located ECMWF for an independent focus day (30 October 2017) that was not included in
any of the training, and assessed the performance of the NUCAPS configurations using the
bias and standard deviation of the difference between NUCAPS products and co-located
ECMWF fields. We also evaluated the NUCAPS averaging kernels and DOFS as defined
in [37]. Our goal here is to compare the different retrieval configurations relative to each
other and the baseline system, not to report on the absolute accuracy of each set of results.

The MW H2Ovap-sensitive channels are also sensitive to tropospheric Tp variations.
For this reason, NUCAPS retrieves H2Ovap after it has retrieved Tp so that scene-dependent
knowledge about atmospheric Tp and its error may benefit the H2Ovap retrieval. In addition,
NUCAPS re-retrieves Tp (from the same a-priori state) after the H2Ovap profile has been
retrieved. On this second pass, we utilize additional weak H2Ovap sensitive channels to
improve Tp sensitivity to the lower troposphere. We can, therefore, use the NUCAPS
H2Ovap retrieval as an indicator of the quality of its Tp retrieval. For this reason, we present
our analysis in this section for both Tp and the H2Ovap, since their retrievals interact. All
band configurations were optimized to use the best channels available within the available
bands. See Section 3 for more details of this optimization.

4.2. Results

In Figure 7, we show the Tp results and in Figure 8, we show the H2Ovap results. In
each figure, we show the four configurations of CrIS + ATMS (panels a, c) and also the
four CrIS-only configurations (panels b, d). We calculated bias (panels a, b) and standard
deviation (panels c, d) of Tp and H2Ovap with respect to ECMWF model profiles of the same
variables. Organizing the figures in this way allows for the relatively easy comparison of
all eight configurations.
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Figure 7. The accuracy and precision of NUCAPS retrieval results for temperature, Tp, calculated as 
the (a,b) bias and (c,d) standard deviation (SDV), respectively, for an independent focus day, 30 
October, 2017. Model profiles of Tp from the European Center for Medium-range Weather Forecasts 
(ECMW) system were used as proxy for the true state. Tp bias and SDV are given for the difference 
between retrieved and modelled state in units (K). NUCAPS CrIS+ATMS systems are shown on the 
left (a,c) and CrIS-only systems on the right (b,d). Four NUCAPS configurations are contrasted here 
with (red) the baseline LW+MW+SW configuration, (blue) the LW+MW configuration, (black) the 
MW+SW configuration, and (green) the LW+SW configuration. For each configuration, we plot the 
bias and SDV for the (dashed lines) regression retrieval output and the (solid lines) O-E retrieval 
output. 

Figure 7. The accuracy and precision of NUCAPS retrieval results for temperature, Tp, calculated
as the (a,b) bias and (c,d) standard deviation (SDV), respectively, for an independent focus day, 30
October, 2017. Model profiles of Tp from the European Center for Medium-range Weather Forecasts
(ECMW) system were used as proxy for the true state. Tp bias and SDV are given for the difference
between retrieved and modelled state in units (K). NUCAPS CrIS + ATMS systems are shown on the
left (a,c) and CrIS-only systems on the right (b,d). Four NUCAPS configurations are contrasted here
with (red) the baseline LW + MW + SW configuration, (blue) the LW + MW configuration, (black) the
MW + SW configuration, and (green) the LW + SW configuration. For each configuration, we plot
the bias and SDV for the (dashed lines) regression retrieval output and the (solid lines) O-E retrieval
output.
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We will begin with a discussion of the CrIS+ATMS configurations (i.e., panels a + c 
in Figures 7 and 8). These statistics demonstrate that all of the CrIS+ATMS systems behave 
similarly with the only significant difference visible in the H2Ovap retrievals when the CrIS 
MW band is excluded (Figure 8a,c: LW+SW system, green lines) or when the LW water 
vapor information is lost (Figure 8a,c: MW+SW system, black lines). The similarity of these 
statistics suggests that all of these configurations are viable for operational NUCAPS 
systems in the event of future CrIS instrument failures. Overall, CrIS is an excellent 
humidity sensor and these results suggest that the current SNPP CrIS Side-B (i.e., 
MW+SW) has more information content than the current operational instrument 

Figure 8. Same as Figure 8 except for water vapor, H2Ovap, which is given as the percent difference
[%] with respect to ECMWF. NUCAPS CrIS + ATMS systems are shown on the left (a,c) and CrIS-only
systems on the right (b,d).

We will begin with a discussion of the CrIS + ATMS configurations (i.e., panels a + c in
Figures 7 and 8). These statistics demonstrate that all of the CrIS + ATMS systems behave
similarly with the only significant difference visible in the H2Ovap retrievals when the CrIS
MW band is excluded (Figure 8a,c: LW + SW system, green lines) or when the LW water
vapor information is lost (Figure 8a,c: MW + SW system, black lines). The similarity of
these statistics suggests that all of these configurations are viable for operational NUCAPS
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systems in the event of future CrIS instrument failures. Overall, CrIS is an excellent
humidity sensor and these results suggest that the current SNPP CrIS Side-B (i.e., MW +
SW) has more information content than the current operational instrument configuration
(Side-A = LW + SW), especially given that the SW offers mostly redundant information
content when paired with the LW band.

To exaggerate the differences among the various NUCAPS configurations, we omitted
ATMS from both the regression and O-E NUCAPS retrievals steps. Except for the omission
of ATMS, the baseline experiment mimics the NUCAPS operational setup with regression
coefficients from all channels in the LW, MW and SW CrIS bands for its statistical first
guess retrieval as well as selected Tp channels from the LW, MW, and SW bands for its O-E
retrieval (see Figure 1).

In Figures 7 and 8, panels b + d, we show a statistical evaluation for all four system
configurations without ATMS, namely (red) LW + MW + SW, (blue) LW + MW, (black)
MW + SW, and (green) LW + SW. We calculated a Tp and H2Ovap bias (Figures 7b and 8b,
respectively) and standard deviation (Figures 7d and 8d, respectively) by comparing the
NUCAPS retrievals to collocated ECMWF model profiles of the same variables. The
systems without ATMS all have ~20% lower yield than the same systems with ATMS. This
is expected because it is more difficult to accurately ‘cloud clear’ without knowledge about
the clear atmospheric state from microwave soundings. The lower yield is acceptable for
this analysis because we are only evaluating the relative information content of the MW +
SW versus LW + MW systems. In Figures 5 and 6 (also Table 3), we depict our eigenvector
analysis and demonstrate that the LW + MW configuration has approximately the same
amount of information as the LW + MW + SW configuration. Our results here are consistent
with that result, because we see that the performance of the LW + MW is very similar to the
LW + MW + SW. Note how the MW + SW system degrades Tp retrieval accuracy in the
upper stratosphere. This confirms the lack of Tp information below ~20 hPa in the SW CO2
channels.

Table 3. The total number of eigenvalues (λ) greater than or equal to unity indicates the number
of independent pieces of information for an ensemble of measurements given by its covariance
matrix. The number of λ ≥ 1 is also known as the degrees of freedom for signal (DOFS) and used as
a metric for information content. This table summarizes the different CrIS channel configurations
presented in Figure 5. Column 1 lists the channel combinations as being from the CrIS longwave (LW;
650.0–1095 cm−1), midwave (MW; 1210–1750 cm−1) and shortwave (SW; 2155–2550 cm−1). Column
2 lists the line type in Figure 5 that the tabled values correspond to, Column 3 is the total number of
channels (Nc) in each subset configuration and Column 4 the DOFS.

Channel Configuration Line in Figure 5 Nc DOFS

LW + MW + SW Solid black 2211 100

LW + MW Solid blue 1578 85

MW + SW Solid red 1498 65

LW-only Dashed blue 713 65

MW-only (not shown) 865 60

SW-only Dashed red 633 35

LW (690–790 cm−1) Dotted black 161 30

MW + LW (690–790 cm−1) Dashed black 1026 65

The degradation of the Tp retrievals in the lower troposphere (800–1000 hPa in
Figure 7d) for the MW + SW and LW + SW configurations (e.g., ~3 K versus ~2 K at
1000 hPa) is due to the loss of water information. NUCAPS exploits many weak water lines
in the LW and MW that have strong sensitivity to lower tropospheric Tp, and without these
channels, the retrieval degrades. Note that proposed instruments that measure between
1750 cm−1 and 2155 cm−1 would not have this issue.



Remote Sens. 2023, 15, 547 21 of 27

The results shown here for the MW + SW system ignored the SW non-LTE-sensitive
channels (i.e., we removed channels from 2255 cm−1 to 2383 cm−1) in the calculation of
regression coefficients. We first ran the experiment using all SW channels, including those
sensitive to non-LTE effects, but found the results to degrade significantly (not shown here,
but the root-mean-square of Tp in the 700-surface layer was > 1 K larger). We make sense
of this by arguing that the linear statistical regression for the MW + SW system cannot
correct for non-LTE effects without the LW information in the coefficient training ensemble.
The non-LTE sensitive channels are, however, used in the subsequent SW O-E retrieval. In
addition to non-LTE effects, we found that cloud clearing has reduced accuracy in the MW
+ SW system. Both of these issues will require more analysis and are out of scope for the
current study.

We evaluated the NUCAPS configurations separately for daytime and nighttime;
however, we are only showing the aggregated statistics in Figures 7 and 8. For all systems
except the MW + SW there is no significant difference in performance between daytime
and nighttime. In the MW + SW configuration we have similar yield of accepted retrievals
(48.9% for daytime and 48.8% for nighttime scenes) and we find that the majority of the
increased RMS and BIAS in Tp (see Figure 7) are coming from the nighttime scenes for both
the regression and O-E components of NUCAPS (~2.9 K RMS in the 700-surface layer for
nighttime versus ~2.5 K RMS for daytime). It is also interesting to note that the systems in
which non-LTE channels were used (not shown) in the regression did not experience the
day/night difference in statistics. We expect that the degradation in Tp is due the higher
noise of the CrIS instrument for cold scenes due to the non-linearity of the Planck function
as well as, to a lesser extent, the loss of the lower-tropospheric Tp information coming from
the CO2 non-LTE-sensitive channels (2250–2350 cm−1) in the regression. This implies that
is it important for any proposed SW-band instrument to have very low noise and that more
work may be needed on non-LTE corrections if a SW IR-only configuration for retrievals is
proposed for operational use.

Another useful diagnostic tool for analyzing the skill of soundings is averaging kernels.
See [7,37] for a full description of the AIRS Science Team calculation for retrieval averaging
kernels and a discussion of their applications. The averaging kernels are analogous to the
channel Jacobians discussed earlier, except that they represent the signal-to-noise ratio
of the entire retrieval system using aggregates of channels. In the vertical regions where
the averaging kernel is close to zero the retrieval is returning the a-priori value, which
for NUCAPS is the regression retrieval. In Figure 9, we show the mean (solid line) and
standard deviation (error bars) of the diagonal vector from all Tp and H2Ovap retrieval
averaging kernel matrices for all ascending orbits of SNPP and three CrIS-only NUCAPS
configurations on 30 October 2017. The ascending orbit of SNPP has a local overpass time
around 13 h 30 every day. There are very small differences in the mean averaging kernel
vectors across all three systems, but we do see that the SW + MW systems have a slightly
improved mid-tropospheric Tp sensitivity and slightly degraded sensitivity to H2Ovap near
the boundary layer, compared to the LW + MW + SW and LW + MW systems. Theoretically,
the improvement in Tp is expected, because the SW IR band has CO2-sensitive channels
with higher vertical resolution and better Tp sounding capability than the LW CO2-sensitive
channels, as explained by [47]. The MW + SW degradation in H2Ovap sounding capability
near the surface is also expected because the LW band has sensitivity to H2Ovap that is
lacking in the CrIS SW IR band.
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Figure 9. The mean (solid line) and standard deviation (error bars) of the diagonal vector from
all ascending orbit (~13 h 30 local overpass time) Tp and H2Ovap retrieval averaging kernel (AK)
matrices on 30 October 2017 for three SNPP CrIS-only NUCAPS configurations. (Left) The baseline
configuration uses channels from all three CrIS bands, LW + MW + SW. The two experimental
configurations each omit channels from one band at a time, such that (middle) uses only LW + MW
channels, and (right) uses only MW + SW channels. The sum of all values along the vertical axis of
these AK vectors (i.e., the trace of AK matrices) is known as the degrees-of-freedom-for-signal (DOFS)
and summarizes retrieval skill as follows: (left) LW + MW + SW system has DOFS(Tp) = 3.6± 0.4 and
DOFS(H2Ovap) = 2.4 ± 0.7, (middle) LW + MW system has DOFS(Tp) = 3.3 ± 0.4 and DOFS(H2Ovap)
= 2.4 ± 0.7, and (right) MW + SW has DOFS(Tp) = 3.7 ± 0.3 and DOFS(H2Ovap) = 2.3 ± 0.6.

Overall, the NUCAPS O-E analysis confirms our results from the eigenvector analysis
in Figure 6. Our analysis presented here indicates that the use of the CrIS SW band can
provide the same functionality as the CrIS LW band in modern retrieval systems that also
employ the ATMS instrument if all the technical considerations are carefully evaluated
and implemented, including the handling of scene dependent noise, non-LTE effects, the
reflection of sunlight in glint regions with large reflectivity, and clouds. We also speculate
that the poorer performance of the CrIS MW + SW without ATMS is due to the high noise
in the CrIS SW band relative to the LW band. Future SW instrument requirements should
consider a lower noise threshold for this band. These retrieval results and the discussions
within Sections 2 and 3 suggest that a low-noise SW band could be a plausible replacement
for the LW band in future instruments; however, more work is required to fully demonstrate
that.

5. Conclusions

From the analysis presented in Section 4, we expect that the SW band is a viable
replacement for the LW band in retrieval systems and probably in data assimilation if three
issues are properly managed. First, channels sensitive to non-LTE should either be ignored
or corrected. Second, the surface spectral emissivity and reflectivity either need to be
retrieved or accurately specified. Scenes that have specular reflection (i.e., glint) may need to
be ignored; however, within the NUCAPS retrieval system, we solved for the reflectivity for
all scenes. Finally, we recommend that radiance units are used for both the measurements
and the noise. If that cannot be accommodated, then, at a minimum, the instrument noise
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needs to be specified in a way that accounts for the non-linearity of the Planck function.
Data assimilation could utilize the approach implemented in NUCAPS where we never
convert the observed CrIS radiance into brightness temperature and the instrument noise
is specified in radiance units (i.e., NE∆N), which is a reasonably constant value for each
CrIS channel. Since radiance and noise vary by two orders of magnitude over the range
of the CrIS spectrum, both the observations and noise are converted to pseudo-brightness
temperature differences that are numerically the same magnitude between LW and SW (see
Equation (2) and the discussion in Section 2.2). By using pseudo-brightness temperature
differences, all CrIS channels can be exploited without introducing any asymmetry in the
retrieval error covariance caused by near-zero or negative radiances.

This is the first time, to our knowledge, that a retrieval system has exclusively utilized
the SW band for cloud clearing and retrieval of Tp. We made every attempt to optimize this
system; however, more work would be required for this configuration to be implemented
in operational systems.

These concepts are being evaluated within the NOAA and ECMWF global NWP DA
systems and an Observing System Experiment (OSE) to evaluate the performance of the
CrIS MW + SW configuration and the LW + MW configuration of the CrIS instrument will
be published separately.

If future sounding requirements evolve towards smaller footprint sizes, then the SW
band might have significantly lower cost and risk relative to the LW band [69]. The CrIS
instrument has band gaps, most notably between 1750 and 2155 cm−1. Future instrument
concepts should be able to exploit this region in numerous ways. There is potential to
retrieve some information about ozone from the 2125–2150 cm−1 spectral region, if the
instrument noise is low enough and there is reasonable knowledge about the concen-
tration of carbon dioxide. Future instruments could exploit the use of the shortwave
side of the 6.6 µm water band (1600–2200 cm−1) as a replacement for the longwave side
(1210–1600 cm−1). The NUCAPS retrieval results demonstrate that the SW bands can be
used for CrIS; however, it is possible that non-LTE corrections are not currently sufficiently
accurate for data assimilation applications. Additional research may be necessary on opera-
tional non-LTE corrections for NWP applications, especially for new satellites that do not
have LW or microwave information that can be utilized for non-LTE correction training.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15030547/s1, Table S1: Summary of the experiments discussed
in this paper. Each experiment is defined by the CrIS bands used in the Regression and Optimal
Estimation (O-E) retrieval steps. The CrIS instrument has three bands that span the infrared spec-
trum as follows: the longwave band (LW, 660–1095 cm−1, 713 total channels), the midwave (MW,
1210–1750 cm−1, 865 total channels) and the shortwave band (SW, 2155–2550 cm−1, 633 total chan-
nels). Table S2: The CrIS channel subsets for temperature (Tp), water vapor (H2Ovap) and surface
parameters (surface skin temperature, emissivity and reflectivity) that NUCAPS employs in its Opti-
mal Estimation retrieval step. Channels are selected from the CrIS bands, namely the longwave (LW,
660–1095 cm−1, 713 total channels), the midwave (MW, 1210–1750 cm−1, 865 total channels) and the
shortwave band (SW, 2155–2550 cm−1, 633 total channels). This table summarizes the channels used
in the baseline experiment that employed all available CrIS bands, LW + MW + SW. The shaded lists
denote channels used during the second O-E retrieval of Tp. Table S3: Same as Table S1 except for the
LW + MW experiment. The shaded lists denote channels used during the second O-E retrieval of Tp.
Table S4: Same as Table S1 except for the MW + SW experiments. The shaded lists denote channels
used during the second O-E retrieval of Tp. Table S5: Same as Table A.1 except for the LW + SW
experiments. The shaded lists denote channels used during the second O-E retrieval of Tp. Table S6:
Summary of channels used for seven trace gas speces; Ozone (O3), Carbon Dioxide (CO2), Methane
(CH4), Nitric Acid (HNO3), Carbon Monoxide (CO), Nitrous Oxide (N2O) and Sulfur Dioxide(SO2).
The channels subsets are selected based on the spectral signatures as depicted in Figure 2.

https://www.mdpi.com/article/10.3390/rs15030547/s1
https://www.mdpi.com/article/10.3390/rs15030547/s1


Remote Sens. 2023, 15, 547 24 of 27

Author Contributions: Conceptualization, C.D.B. and K.I.; methodology, C.D.B.; software, C.D.B.;
validation, C.D.B., K.I., K.G., N.S. and E.J.; formal analysis C.D.B. and N.S.; investigation, C.D.B., K.I.,
K.G., N.S. and E.J.; writing—original draft preparation C.D.B. and N.S.; visualization, C.D.B. and N.S.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded via the NOAA/NESDIS Office of Projects, Planning and Ac-
quisition Technology Maturation Program through NOAA grants NA14NES4320003 (Cooperative
Institute for Climate and Satellites) and NA19NES4320002 (Cooperative Institute for Satellite Earth
System Studies) at the University of Maryland Earth System Science and Interdisciplinary Center.

Data Availability Statement: The Level 1B Version 2 full spectral resolution CrIS radiance files used
in this study are available at the NASA Goddard Earth Sciences (GES) Data and Information Services
Center (DISC) available online at https://disc.gsfc.nasa.gov/ (accessed on 5 October 2022) with DOI:
10.5067/9NPOTPIPLMAW.

Acknowledgments: The scientific results and conclusions, as well as any views or opinions expressed
herein, are those of the author(s) and do not necessarily reflect those of NOAA or the U.S. Department
of Commerce. The authors would like to thank Sid-Ahmed Boukabara of NOAA/NESDIS for initially
encouraging and supporting this work as well as the three anonymous reviewers for their excellent
comments and for their efforts in helping to make this a better paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Collard, A.D.; McNally, A.P. The Assimilation of Infrared Atmospheric Sounding Interferometer Radiances at ECMWF. Q. J. R.

Meteorol. Soc. 2009, 135, 1044–1058. [CrossRef]
2. Collard, A.D. Selection of IASI Channels for Use in Numerical Weather Prediction. Q. J. R. Meteorol. Soc. 2007, 133, 1977–1991.

[CrossRef]
3. Yin, M. Bias Characterization of CrIS Shortwave Temperature Sounding Channels Using Fast NLTE Model and GFS Forecast

Field. J. Geophys. Res. Atmos. 2016, 121, 1248–1263. [CrossRef]
4. Chen, Y.; Han, Y.; van Delst, P.; Weng, F. Assessment of Shortwave Infrared Sea Surface Reflection and Nonlocal Thermodynamic

Equilibrium Effects in the Community Radiative Transfer Model Using IASI Data. J. Atmos. Ocean. Technol. 2013, 30, 2152–2160.
[CrossRef]

5. DeSouza-Machado, S.G.; Strow, L.L.; Hannon, S.E.; Motteler, H.E.; Lopez-Puertas, M.; Funke, B.; Edwards, D.P. Fast Forward
Radiative Transfer Modeling of 4.3 Mm Nonlocal Thermodynamic Equilibrium Effects for Infrared Temperature Sounders.
Geophys. Res. Lett. 2007, 34, 1. [CrossRef]

6. Maddy, E.S.; Barnet, C.D.; Gambacorta, A. A Computationally Efficient Retrieval Algorithm for Hyperspectral Sounders
Incorporating A-Priori Information. IEEE Geosci. Remote Sens. Lett. 2009, 6, 802–806. [CrossRef]

7. Smith, N.; Barnet, C.D. Uncertainty Characterization and Propagation in the Community Long-Term Infrared Microwave
Combined Atmospheric Product System (CLIMCAPS). Remote Sens. 2019, 11, 1227. [CrossRef]

8. Susskind, J.; Blaisdell, J.M.; Iredell, L. Improved Methodology for Surface and Atmospheric Soundings, Error Estimates, and
Quality Control Procedures: The Atmospheric Infrared Sounder Science Team Version-6 Retrieval Algorithm. J. Appl. Remote Sens.
2014, 8, 084994. [CrossRef]

9. Pagano, T.S.; Abesamis, C.; Andrade, A.; Aumann, H.; Gunapala, S.; Heneghan, C.; Jarnot, R.; Johnson, D.; Lamborn, A.;
Maruyama, Y.; et al. CubeSat Infrared Atmospheric Sounder Technology Development Status. J. Appl. Remote Sens. 2019, 13, 1.
[CrossRef]

10. Glumb, R.J.; Jordan, D.C.; Mantica, P. Development of the Crosstrack Infrared Sounder (CrIS) Sensor Design. In Proceedings of
the Infrared Remote Sensing IX, San Diego, CA, USA, 29 July–3 August 2001; Volume 4486. [CrossRef]

11. Han, Y.; Revercomb, H.; Cromp, M.; Gu, D.; Johnson, D.; Mooney, D.; Scott, D.; Strow, L.; Bingham, G.; Borg, L.; et al. Suomi NPP
CrIS Measurements, Sensor Data Record Algorithm, Calibration and Validation Activities, and Record Data Quality. J. Geophys.
Res. Atmos. 2013, 118, 12734–12748. [CrossRef]

12. Aumann, H.H.; Chahine, M.T.; Gautier, C.; Goldberg, M.D.; Kalnay, E.; McMillin, L.M.; Revercomb, H.; Rosenkranz, P.W.; Smith,
W.L.; Staelin, D.H.; et al. AIRS/AMSU/HSB on the Aqua Mission: Design, Science Objectives, Data Products, and Processing
Systems. IEEE Trans. Geosci. Remote Sens. 2003, 41, 253–264. [CrossRef]

13. Chalon, G.; Astruc, P.; Hébert, P.; Blumstein, D.; Buil, C.; Carlier, T.; Clauss, A.; Siméoni, D.; Tournier, B. IASI Instrument:
Technical Description and Measured Performances. In Proceedings of the International Conference on Space Optics—ICSO 2004,
Toulouse, France, 30 March–2 April 2004; Volume 10568, p. 1056806. [CrossRef]

14. Eresmaa, R.; Letertre-Danczak, J.; Lupu, C.; Bormann, N.; McNally, A.P. The Assimilation of Cross-Track Infrared Sounder
Radiances at ECMWF. Q. J. R. Meteorol. Soc. 2017, 143, 3177–3188. [CrossRef]

https://disc.gsfc.nasa.gov/
http://doi.org/10.1002/qj.410
http://doi.org/10.1002/qj.178
http://doi.org/10.1002/2015JD023876
http://doi.org/10.1175/JTECH-D-12-00267.1
http://doi.org/10.1029/2006GL026684
http://doi.org/10.1109/LGRS.2009.2025780
http://doi.org/10.3390/rs11101227
http://doi.org/10.1117/1.JRS.8.084994
http://doi.org/10.1117/1.JRS.13.032512
http://doi.org/10.1117/12.455124
http://doi.org/10.1002/2013JD020344
http://doi.org/10.1109/TGRS.2002.808356
http://doi.org/10.1117/12.2308007
http://doi.org/10.1002/qj.3171


Remote Sens. 2023, 15, 547 25 of 27

15. Fourrié, N.; Thépaut, J.-N. Evaluation of the AIRS Near-Real-Time Channel Selection for Application to Numerical Weather
Prediction. Q. J. R. Meteorol. Soc. 2003, 129, 2425–2439. [CrossRef]

16. Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.;
et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454.
[CrossRef] [PubMed]

17. Guidard, V.; Fourrié, N.; Brousseau, P.; Rabier, F. Impact of IASI Assimilation at Global and Convective Scales and Challenges for
the Assimilation of Cloudy Scenes. Q. J. R. Meteorol. Soc. 2011, 137, 1975–1987. [CrossRef]

18. Li, J.; Han, W. A Step Forward toward Effectively Using Hyperspectral IR Sounding Information in NWP. Adv. Atmos. Sci. 2017,
34, 1263–1264. [CrossRef]

19. Martinet, P.; Lavanant, L.; Fourrié, N.; Rabier, F.; Gambacorta, A. Evaluation of a Revised IASI Channel Selection for Cloudy
Retrievals with a Focus on the Mediterranean Basin. Q. J. R. Meteorol. Soc. 2014, 140, 1563–1577. [CrossRef]

20. McCarty, W.; Jedlovec, G.; Miller, T.L. Impact of the Assimilation of Atmospheric Infrared Sounder Radiance Measurements on
Short-Term Weather Forecasts. J. Geophys. Res. 2009, 114. [CrossRef]

21. Rabier, F.; Järvinen, H.; Klinker, E.; Mahfouf, J.-F.; Simmons, A. The ECMWF Operational Implementation of Four-Dimensional
Variational Assimilation. I: Experimental Results with Simplified Physics. Q. J. R. Meteorol. Soc. 2007, 126, 1143–1170. [CrossRef]

22. Reale, O.; Susskind, J.; Rosenberg, R.; Brin, E.; Liu, E.; Riishojgaard, L.P.; Terry, J.; Jusem, J.C. Improving Forecast Skill by
Assimilation of Quality-Controlled AIRS Temperature Retrievals under Partially Cloudy Conditions. Geophys. Res. Lett. 2008, 35,
8. [CrossRef]

23. Reale, O.; McGrath-Spangler, E.L.; McCarty, W.; Holdaway, D.; Gelaro, R. Impact of Adaptively Thinned AIRS Cloud-Cleared
Radiances on Tropical Cyclone Representation in a Global Data Assimilation and Forecast System. Weather Forecast. 2018, 33,
909–931. [CrossRef]

24. Wang, G.; Zhang, J. Generalised Variational Assimilation of Cloud-Affected Brightness Temperature Using Simulated Hyper-
Spectral Atmospheric Infrared Sounder Data. Adv. Space Res. 2014, 54, 49–58. [CrossRef]

25. Berndt, E.B.; Smith, N.; Burks, J.; White, K.; Esmaili, R.; Kuciauskas, A.; Duran, E.; Allen, R.; LaFontaine, F.; Szkodzinski, J.
Gridded Satellite Sounding Retrievals in Operational Weather Forecasting: Product Description and Emerging Applications.
Remote Sens. 2020, 12, 3311. [CrossRef]

26. Esmaili, N.; Smith, N.; Schoeberl, M.; Barnet, C.D. Evaluating Satellite Sounding Temperature Observations for Cold Air Aloft
Detection. Atmosphere 2020, 11, 1360. [CrossRef]

27. Smith, N.; White, K.D.; Berndt, E.B.; Zavodsky, B.T.; Wheeler, A.; Bowlan, M.A.; Barnet, C.D. NUCAPS in AWIPS–Rethinking
Information Compression and Distribution for Fast Decision Making. In Proceedings of the American Meteorological Society
Annual Meeting, Austin, TX, USA, 6–11 January 2018.

28. Smith, N.; Berndt, E.B.; Barnet, C.D.; Goldberg, M.D. Why Operational Meteorologists Need More Satellite Soundings. In
Proceedings of the 99th American Meteor Society Annual Meeting, Phoenix, AZ, USA, 6–10 January 2019. Available on-
line: https://ams.confex.com/ams/2019Annual/mediafile/Manuscript/Paper355319/AMS2019_Paper3.7_Extended_Abstract_
NadiaSmith.pdf (accessed on 5 October 2022).

29. Weaver, G.; Smith, N.; Berndt, E.B.; White, K.D.; Dostalek, J.F.; Zavodsky, B.T. Addressing the Cold Air Aloft Aviation Challenge
with Satellite Sounding Observations. J. Oper. Meteorol. 2019, 7, 138–152. [CrossRef]

30. Weisz, E.; Smith, N.; Smith, W.L. The Use of Hyperspectral Sounding Information to Monitor Atmospheric Tendencies Leading to
Severe Local Storms. Earth Space Sci. 2015, 2, 369–377. [CrossRef]

31. Goldberg, D.G.; Qu, Y.; McMillim, L.M.; Wolf, W.; Zhou, L.; Divakarla, G. AIRS Near-Real-Time Products and Algorithms in
Support of Operational Numerical Weather Prediction. IEEE TGRS 2003, 41, 379–389. [CrossRef]

32. Liu, X.; Zhou, D.K.; Larar, A.; Smith, W.L.; Mango, S.A. Case-Study of a Principal-Component-Based Radiative Transfer Forward
Model and Retrieval Algorithm Using EAQUATE Data. Q. J. R. Meteorol. Soc. 2007, 133, 243–256. [CrossRef]

33. Weisz, E.; Smith, W.L.; Smith, N. Advances in Simultaneous Atmospheric Profile and Cloud Parameter Regression Based Retrieval
from High-Spectral Resolution Radiance Measurements. J. Geophys. Res. Atmos. 2013, 118, 6433–6443. [CrossRef]

34. Smith, W.L.; Weisz, E.; Kireev, S.V.; Zhou, D.K.; Li, Z.; Borbas, E.E. Dual-Regression Retrieval Algorithm for Real-Time Processing
of Satellite Ultraspectral Radiances. JAMC 2012, 51, 1455–1476. [CrossRef]

35. Wu, W.; Liu, X.; Yang, Q.; Zhou, D.K.; Larar, A.; Zhao, M.; Zhou, L. All Sky Single Field of View Retrieval System for Hyperspectral
Sounding. In Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, IEEE,
Yokohama, Japan, 28 July–2 August 2019. [CrossRef]

36. Crevoisier, C.; Chedin, A.; Scott, N.A. AIRS Channel Selection for CO2 and Other Trace-Gas Retrievals. Q. J. R. Meteorol. Soc. 2003,
129, 2719–2740. [CrossRef]

37. Smith, N.; Barnet, C.D. CLIMCAPS Observing Capability for Temperature, Moisture, and Trace Gases from AIRS/AMSU and
CrIS/ATMS. Atmos. Meas. Tech. 2020, 13, 4437–4459. [CrossRef]

38. Susskind, J.; Blaisdell, J.M.; Iredell, L.; Keita, F. Improved Temperature Sounding and Quality Control Methodology Using
AIRS/AMSU Data: The AIRS Science Team Version 5 Retrieval Algorithm. IEEE Trans. Geosci. Remote Sens. 2011, 49, 883–907.
[CrossRef]

39. Chang, S.; Sheng, Z.; Du, H.; Ge, W.; Zhang, W. A Channel Selection Method for Hyperspectral Atmospheric Infrared Sounders
Based on Layering. Atmos. Meas. Tech. 2020, 13, 629–644. [CrossRef]

http://doi.org/10.1256/qj.02.210
http://doi.org/10.1175/JCLI-D-16-0758.1
http://www.ncbi.nlm.nih.gov/pubmed/32020988
http://doi.org/10.1002/qj.928
http://doi.org/10.1007/s00376-017-7167-2
http://doi.org/10.1002/qj.2239
http://doi.org/10.1029/2008JD011626
http://doi.org/10.1002/qj.49712656415
http://doi.org/10.1029/2007GL033002
http://doi.org/10.1175/WAF-D-17-0175.1
http://doi.org/10.1016/j.asr.2014.03.009
http://doi.org/10.3390/rs12203311
http://doi.org/10.3390/atmos11121360
https://ams.confex.com/ams/2019Annual/mediafile/Manuscript/Paper355319/AMS2019_Paper3.7_Extended_Abstract_NadiaSmith.pdf
https://ams.confex.com/ams/2019Annual/mediafile/Manuscript/Paper355319/AMS2019_Paper3.7_Extended_Abstract_NadiaSmith.pdf
http://doi.org/10.15191/nwajom.2019.0710
http://doi.org/10.1002/2015EA000122
http://doi.org/10.1109/TGRS.2002.808307
http://doi.org/10.1002/qj.156
http://doi.org/10.1002/jgrd.50521
http://doi.org/10.1175/JAMC-D-11-0173.1
http://doi.org/10.1109/IGARSS.2019.8898307
http://doi.org/10.1256/qj.02.180
http://doi.org/10.5194/amt-13-4437-2020
http://doi.org/10.1109/TGRS.2010.2070508
http://doi.org/10.5194/amt-13-629-2020


Remote Sens. 2023, 15, 547 26 of 27

40. Coopmann, O.; Guidard, V.; Fourrié, N.; Josse, B.; Marécal, V. Update of Infrared Atmospheric Sounding Interferometer (IASI)
Channel Selection with Correlated Observation Errors for Numerical Weather Prediction (NWP). Atmos. Meas. Technol. 2020, 13,
2659–2680. [CrossRef]

41. Fourrié, N.; Rabier, F. Cloud Characteristics and Channel Selection for IASI Radiances in Meteorologically Sensitive Areas. Q. J. R.
Meteorol. Soc. 2004, 130, 1839–1856. [CrossRef]

42. Rabier, F.; Fourrié, N.; Chafaï, D.; Prunet, P. Channel Selection Methods for Infrared Atmospheric Sounding Interferometer
Radiances. Q. J. R. Meteorol. Soc. 2002, 128, 1011–1027. [CrossRef]

43. Ventress, L.; Dudhia, A. Improving the Selection of IASI Channels for Use in Numerical Weather Prediction. Q. J. R. Meteorol. Soc.
2014, 140, 2111–2118. [CrossRef]

44. Gambacorta, A.; Barnet, C.D. Methodology and Information Content of the NOAA NESDIS Operational Channel Selection for
the Cross-Track Infrared Sounder (CrIS). IEEE Trans. Geosci. Remote Sens. 2013, 51, 3207–3216. [CrossRef]

45. Cañas, C.; Pagano, T.S.; Rafol, S.B. Radiometric Performance Characterization of the CubeSat Infrared Atmospheric Sounder
(CIRAS) High Operating Temperature-Barrier Infrared Detectors (HOT-BIRD). In Proceedings of the CubeSats and SmallSats for
Remote Sensing IV, Online Only USA, 23 August 2020; Norton, C.D., Pagano, T.S., Babu, S.R., Eds.; SPIE: Bellingham, WA, USA,
2020; p. 6.

46. Li, Z.; Li, J.; Schmit, T.J.; Wang, P.; Lim, A.; Li, J.; Nagle, F.W.; Bai, W.; Otkin, J.A.; Atlas, R.; et al. The Alternative of CubeSat-Based
Advanced Infrared and Microwave Sounders for High Impact Weather Forecasting. Atmos. Ocean. Sci. Lett. 2019, 12, 80–90.
[CrossRef]

47. Kaplan, L.D.; Chahine, M.T.; Susskind, J.; Searl, J.E. Spectral Band Passes for a High Precision Satellite Sounder. Appl. Opt. 1977,
16, 322. [CrossRef] [PubMed]

48. Huang, A.; Gumley, L.; Strabala, K.; Mindock, S.; Garcia, R.; Martin, G.; Cureton, G.; Davies, J.; Bearson, N.; Braum, J.; et al.
Community Satellite Processing Package from Direct Broadcast: Providing Real-Time Satellite Data to Every Corner of the World.
In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), IEEE, Beijing, China, 10–15
July 2016; pp. 5532–5535. [CrossRef]

49. Nalli, N.R.; Tan, C.; Warner, J.; Divakarla, M.; Gambacorta, A.; Wilson, M.; Zhu, T.; Wang, T.; Wei, Z.; Pryor, K.; et al. Validation of
Carbon Trace Gas Profile Retrievals from the NOAA-Unique Combined Atmospheric Processing System for the Cross-Track
Infrared Sounder. Remote Sens. 2020, 12, 3245. [CrossRef]

50. Nalli, N.R.; Gambacorta, A.; Liu, Q.; Barnet, C.D.; Tan, C.; Iturbide-Sanchez, F.; Reale, R.; Sun, B.; Wilson, M.; Borg, L.; et al.
Validation of Atmospheric Profile Retrievals From the SNPP NOAA-Unique Combined Atmospheric Processing System. Part 1:
Temperature and Moisture. IEEE Trans. Geosci. Remote Sens. 2018, 56, 180–190. [CrossRef]

51. Nalli, N.R.; Gambacorta, A.; Liu, Q.; Tan, C.; Iturbide-Sanchez, F.; Barnet, C.D.; Joseph, E.; Morris, V.R.; Oyola, M.; Smith, J.W.
Validation of Atmospheric Profile Retrievals from the SNPP NOAA-Unique Combined Atmospheric Processing System. Part 2:
Ozone. IEEE Trans. Geosci. Remote Sens. 2018, 56, 598–607. [CrossRef]

52. Sun, B.; Reale, A.; Tilley, F.H.; Pettey, M.E.; Nalli, N.R.; Barnet, C.D. Assessment of NUCAPS S-NPP CrIS/ATMS Sounding
Products Using Reference and Conventional Radiosonde Observations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10,
2499–2509. [CrossRef]

53. Kalluri, S.; Barnet, C.; Divakarla, M.; Esmaili, R.; Nalli, N.; Pryor, K.; Reale, T.; Smith, N.; Tan, C.; Wang, T.; et al. Validation and
Utility of Satellite Retrievals of Atmospheric Profiles in Detecting and Monitoring Significant Weather Events. Bull. Am. Meteorol.
Soc. 2022, 103, E570–E590. [CrossRef]

54. Susskind, J.; Barnet, C.D.; Blaisdell, J.M. Retrieval of Atmospheric and Surface Parameters from AIRS/AMSU/HSB Data in the
Presence of Clouds. IEEE TGRS 2003, 41, 390–409. [CrossRef]

55. Chahine, M.T.; Pagano, T.S.; Aumann, H.H.; Atlas, R.; Barnet, C.D.; Blaisdell, J.; Chen, L.; Divakarla, M.; Fetzer, E.J.; Goldberg, M.;
et al. AIRS: Improving Weather Forecasting and Providing New Data on Greenhouse Gases. Bull. Am. Meteorol. Soc. 2006, 87,
911–926. [CrossRef]

56. Barnet, C.D.; Divakarla, M.; Gambacorta, A.; Iturbide-Sanchez, F.; Tan, C.; Wang, T.; Warner, J.; Zhang, K.; Zhu, T. NOAA Unique
Combined Atmospheric Processing System (NUCAPS) Algorithm Theoretical Basis Document; National Oceanic and Atmospheric
Administration: Washington, DC, USA, 2021; p. 110.

57. Strow, L.L.; Hannon, S.E.; De Souza-Machado, S.; Motteler, H.E.; Tobin, D. An Overview of the AIRS Radiative Transfer Model.
IEEE Trans. Geosci. Remote Sens. 2003, 41, 303–313. [CrossRef]

58. Barnet, C.D.; Blaisdell, J.M.; Susskind, J. An Analytical Transformation for Use in Computation of Interferometric Spectra for
Remote Sensing Applications. IEEE TGRS 2000, 38, 169–183.

59. Chahine, M.T. Remote Sensing of Cloud Parameters. J. Atmos. Sci. 1982, 39, 159–170. [CrossRef]
60. Rothman, L.S.; Gamache, R.R.; Goldman, A.; Brown, L.R.; Toth, R.A.; Pickett, H.M.; Poynter, R.L.; Flaud, J.-M.; Camy-Peyret, C.;

Barbe, A.; et al. The HITRAN Database: 1986 Edition. Appl. Opt. 1987, 26, 4058. [CrossRef] [PubMed]
61. Gordon, I.E.; Rothman, L.S.; Hill, C.; Kochanov, R.V.; Tan, Y.; Bernath, P.F.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K.V.;

et al. The HITRAN2016 Molecular Spectroscopic Database. J. Quant. Spectrosc. Radiat. Transf. 2017, 203, 3–69. [CrossRef]
62. Andrews, D.G.; Leovy, C.B.; Holton, J.R.; Marshall, J.; Plumb, R.A. Middle Atmosphere Dynamics; Elsevier Science & Technology:

Saint Louis, MO, USA, 1987; ISBN 978-0-08-051167-2.

http://doi.org/10.5194/amt-13-2659-2020
http://doi.org/10.1256/qj.03.27
http://doi.org/10.1256/0035900021643638
http://doi.org/10.1002/qj.2280
http://doi.org/10.1109/TGRS.2012.2220369
http://doi.org/10.1080/16742834.2019.1568816
http://doi.org/10.1364/AO.16.000322
http://www.ncbi.nlm.nih.gov/pubmed/20168489
http://doi.org/10.1109/IGARSS.2016.7730443
http://doi.org/10.3390/rs12193245
http://doi.org/10.1109/TGRS.2017.2744558
http://doi.org/10.1109/TGRS.2017.2762600
http://doi.org/10.1109/JSTARS.2017.2670504
http://doi.org/10.1175/BAMS-D-20-0126.1
http://doi.org/10.1109/TGRS.2002.808236
http://doi.org/10.1175/BAMS-87-7-911
http://doi.org/10.1109/TGRS.2002.808244
http://doi.org/10.1175/1520-0469(1982)039&lt;0159:RSOCP&gt;2.0.CO;2
http://doi.org/10.1364/AO.26.004058
http://www.ncbi.nlm.nih.gov/pubmed/20490194
http://doi.org/10.1016/j.jqsrt.2017.06.038


Remote Sens. 2023, 15, 547 27 of 27

63. Tobin, D.; Revercomb, H.; Knuteson, R.; Taylor, J.; Best, F.; Borg, L.; DeSlover, D.; Martin, G.; Buijs, H.; Esplin, M.; et al. Suomi-NPP
CrIS Radiometric Calibration Uncertainty. J. Geophys. Res. Atmos. 2013, 118, 10589–10600. [CrossRef]

64. Zavyalov, V.; Esplin, M.; Scott, D.; Esplin, B.; Bingham, G.; Hoffman, E.; Lietzke, C.; Predina, J.; Frain, R.; Suwinski, L.; et al. Noise
Performance of the CrIS Instrument. J. Geophys. Res. Atmos. 2013, 118, 13108–13120. [CrossRef]

65. UW-Madison Space Science and Engineering Center: Hank Revercomb; UMBC Atmospheric Spectroscopy Laboratory: Larrabee
Strow. Suomi NPP CrIS Level 1B Full Spectral Resolution V2. Greenbelt, MD, Goddard Earth Sciences Data and Information
Services Center (GES DISC). Available online: https://doi.org/10.5067/9NPOTPIPLMAW (accessed on 17 November 2022).
[CrossRef]

66. Iturbide-Sanchez, F.; Strow, L.; Tobin, D.; Chen, Y.; Tremblay, D.; Knuteson, R.O.; Johnson, D.G.; Buttles, C.; Suwinski, L.; Thomas,
B.P.; et al. Recalibration and Assessment of the SNPP CrIS Instrument: A Successful History of Restoration After Midwave
Infrared Band Anomaly. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–21. [CrossRef]

67. Smith, J.A.; Taylor, J.P. Initial Cloud Detection Using the EOF Components of High-Spectral-Resolution Infrared Sounder Data. J.
Appl. Meteorol. 2004, 43, 196–210. [CrossRef]

68. Antonelli, P.; Revercomb, H.E.; Sromovsky, L.A.; Smith, W.L.; Knuteson, R.O.; Tobin, D.C.; Garcia, R.K.; Howell, H.B.; Huang,
H.-L.; Best, F.A. A Principal Component Noise Filter for High Spectral Resolution Infrared Measurements: Principal Component
Noise Filter. J. Geophys. Res. Atmos. 2004, 109, D23. [CrossRef]

69. Pagano, T.S.; Johnson, D.L.; McGuire, J.P.; Schwochert, M.A.; Ting, D.Z. Technology Maturation Efforts for the Next Generation
of Grating Spectrometer Hyperspectral Infrared Sounders. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 2929–2943.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1002/jgrd.50809
http://doi.org/10.1002/2013JD020457
https://doi.org/10.5067/9NPOTPIPLMAW
http://doi.org/10.5067/9NPOTPIPLMAW
http://doi.org/10.1109/TGRS.2021.3112400
http://doi.org/10.1175/1520-0450(2004)043&lt;0196:ICDUTE&gt;2.0.CO;2
http://doi.org/10.1029/2004JD004862
http://doi.org/10.1109/JSTARS.2022.3165168

	Introduction 
	Background 
	Operational Use of CrIS Radiances in Retrievals 
	Comparison of the Shortwave and Longwave CrIS Bands 
	Signal and Noise 
	Non-Local Thermal Equilibrium 
	Advantages and Disadvantages of Using the SW Band 


	Evaluating Information Content from Radiance Measurements 
	Deriving Information Content from NUCAPS Retrievals 
	Methods 
	Results 

	Conclusions 
	References

